Lucas' Theorem

2015. 7. 25. 00:14알고리즘 문제풀기/정수론

For a prime number \(p\), Let
$$m=m_{k}p^{k}+m_{k-1}p^{k-1}+ \ldots + m_{0}p^{0},$$
$$n=n_{k}p^{k}+n_{k-1}p^{k-1}+ \ldots + n_{0}p^{0}$$
where \(0 \leq m_{i}, n_{i} < p\)

Lucas' Theroem states that:
$$\dbinom{m}{n} \equiv \displaystyle{\prod_{i=0}^{k}} \dbinom{m_{i}}{n_{i}} \mod p$$


'알고리즘 문제풀기 > 정수론' 카테고리의 다른 글

GCD & Extended Euclidean Algorithm  (1) 2016.08.09
Miller-Rabin 소수 판정법  (0) 2015.12.05
Modular Inverse  (0) 2015.07.23
빠른 거듭제곱  (1) 2015.07.18