Lucas' Theorem
2015. 7. 25. 00:14ㆍ알고리즘 문제풀기/정수론
For a prime number \(p\), Let
$$m=m_{k}p^{k}+m_{k-1}p^{k-1}+ \ldots + m_{0}p^{0},$$
$$n=n_{k}p^{k}+n_{k-1}p^{k-1}+ \ldots + n_{0}p^{0}$$
where \(0 \leq m_{i}, n_{i} < p\)
$$\dbinom{m}{n} \equiv \displaystyle{\prod_{i=0}^{k}} \dbinom{m_{i}}{n_{i}} \mod p$$
'알고리즘 문제풀기 > 정수론' 카테고리의 다른 글
GCD & Extended Euclidean Algorithm (1) | 2016.08.09 |
---|---|
Miller-Rabin 소수 판정법 (0) | 2015.12.05 |
Modular Inverse (0) | 2015.07.23 |
빠른 거듭제곱 (1) | 2015.07.18 |